Preliminary Communication

A convenient stereoselective synthesis of disubstituted alk-1-enyl phosphonates

Henri-Jean Cristau, Marie-Bénédicte Gasc and Xavier Yangkou Mbianda

Laboratoire de Chimie Organique ENSCM (Unité de Recherche Associée au CNRS URA 458), 8 rue de l'Ecole Normale, 34053 Montpellier Cédex 1 (France)

(Received December 31, 1993)

Abstract

A stereoselective synthesis of disubstituted diethyl alk-1-enylphosphonates has been developed via *syn* addition of RMgX/CuCl to alk-1-inylphosphonates.

Key words: Phosphonate; Stereoselective synthesis; Cuprate addition; Phosphorus

Vinyl phosphonates are useful intermediates in the synthesis of biologically active compounds; for example, in the preparation of phosphomycin *via* stereospecific epoxidation of an unsaturated phosphonate [1]. Furthermore they may undergo useful transformations as reagents for organic synthesis [2].

Few methods are known for the preparation of vinyl phosphonates; they are not easily obtained using the classical Arbuzov-Michaelis reaction [3], and so their efficient synthesis is of interest. Alk-1-enyl phosphonates are generally prepared by the Wittig reaction of

Correspondence to: Professor H.-J. Cristau or M.-B. Gasc.

acylphosphonates with methylene bisphosphonate [2,4], dehydration of β -hydroxyethyl phosphonate [2], oxidative elimination of organosulfenyl and organoselenyl moieties from α -sulfenyl and α -selenylalkyl phosphonates [2], via catalytic substitution on alk-1-enylbromide [2,5], and finally by β -elimination of nitrous acid from α -nitroalkyl phosphonate [6].

Here we report a new and easy synthesis of disubstituted vinyl phosphonates starting from readily available alk-1-ynyl phosphonates, 1 [7] and an excess of alkyl- or aryl-magnesium iodide with cuprous salt at -30° C in ether. This affords the corresponding vinyl phosphonates 2 in good yields (Table 1).

$$\begin{array}{c}
O \\
| \\
R'-C \equiv C-P(OEt)_2 \xrightarrow{\text{(1°) RMgI/CuCl}} \\
\hline
(1°) RMgI/CuCl \\
Et_2O; -30°C; 6-7 \text{ h} \\
\hline
(2°) NH_4Cl/H_2O
\end{array}$$

$$R'$$
 R'
 H
 $(75\%-85\%)$

$$R = Oct^n$$
, Ph or 4-Tol, $R' = Pr^n$ or Ph

This addition is a typically regioselective and *syn*-addition process like the addition of organo-copper species to disubstituted alkynes [8]. The *syn*-stereoselective addition of organo-copper to α,β -alkynyl phosphonate 1 has been established unambiguously by ¹H and ¹³C NMR spectroscopy for compounds 2a-c; the ³J coupling constants between ¹³C and ³¹P is typical of a *trans* value, between 21 and 24 Hz [9] (Table 2).

The addition of lithium organocuprate to diethyl

TABLE 1. Synthesis of diethyl alk-1-enyl phosphonates, 2

Compound	R	R'	Reaction time (h)	Yield ^a (%)	IR cm ⁻¹		δ ³¹ P
					$\nu_{C=C}$	$\nu_{P=O}$	(CDCl ₃ , ppm)
2a	Oct n	Ph	6	77	1615	1240	17.1
2b	Oct ⁿ	Prn	7	85	1620	1250	19.2
2c	Ph	Pr ⁿ	6	88	1610	1250	18.5
2d	4-Tol	Ph	7	75	1590	1250	17.6

^a Isolated pure compounds.

TABLE 2. ¹H and ¹³C NMR spectra of diethyl alk-1-enyl phosphonates, 2

$$\begin{array}{c}
4 \\
C \\
3 \\
C
\end{array}$$

$$\begin{array}{c}
C \\
C
\end{array}$$

Compound	R	R'	¹ H (CDCl ₃ /TMS) (ppm, Hz)	¹³ C (CDCl ₃) (ppm, Hz)
2a	Oct ⁿ	Ph	5.65 (d, 1H, ${}^{2}J_{P-H} = 17.8$, C=C HP -); 2.45 (t, 2H, ${}^{2}J_{H-H} = 6.74$, C H_2 -C=C)	162.9 (C ₂ , ${}^{2}J_{P-C} = 3.9$) 139.8 (C ₄ , ${}^{3}J_{P-C} = 7.8$, cis) 113.4 (C ₁ , ${}^{1}J_{P-C} = 191.3$) 41.2 (C ₃ , ${}^{3}J_{P-C} = 21.1$, trans)
2b	Oct ⁿ	Pr ⁿ	5.28 (d, 1H, ${}^{2}J_{P-H} = 18.7$, C=CH-P); 2.4 (dt, 2H, ${}^{4}J_{P-H} = 2.2$, ${}^{3}J_{H-H} = 5.7$ (cis) C ₂ H ₅ CH ₂ -C=C-); 2.1 (t, 2H, ${}^{3}J_{H-H} = 7$, C ₃ H ₇ -C=C-)	$167.1 (C_{2}, {}^{2}J_{P-C} = 6.8)$ $110.8 (C_{1}, {}^{1}J_{P-C} = 189)$ $37.8 (C_{3}, {}^{3}J_{P-C} = 22.5, trans)$ $35.3 (C_{4}, {}^{3}J_{P-C} = 7.0, cis)$
2 c	Ph	Pr ⁿ	5.73 (d, 1H, ${}^{2}J_{P-H} = 17.2$, C=CH-P); 2.95 (dt, 2H, ${}^{4}J_{P-H} = 2.4$, ${}^{3}J_{H-H} = 7.8$ CH ₂ -C=C)	163.7 (C_2 , ${}^2J_{P-C} = 8.7$) 140.6 (C_3 , ${}^3J_{P-C} = 23.7$, trans) 113.8 (C_1 , ${}^1J_{P-C} = 189$) 34.2 (C_4 , ${}^3J_{P-C} = 6.5$, cis)
2d	4-Tol	Ph	6.1 (d, 1H, ${}^{2}J_{P-H} = 15.6$, C=C <i>H</i> -P)	159.8 (C_2 , ${}^{3}J_{P-C} = 6.1$) 138.7 (C_4 , ${}^{3}J_{P-C} = 7.5$, cis) 138.4 (C_3 , ${}^{3}J_{P-C} = 22.3$, trans) 113.4 (C_1 , ${}^{1}J_{P-C} = 194$)

alk-1-enyl phosphonates takes place in a similar way, but our first result suggest poorer selectivities and yields (they are under further investigations).

In a typical experiment, one equivalent of CuCl is introduced into a solution of five equivalents of Grignard reagent in anhydrous ether (with less than five equivalents, the reaction is slower and produces more by-products). The temperature is then lowered to -30° C and one equivalent of alk-1-ynyl phosphonate is slowly added and the mixture is stirred at -30° C for 6 to 7 h. After hydrolysis by an aqueous solution of NH₄Cl the aqueous phase is extracted with ether and the organic phases are dried with Na₂SO₄ before concentration. The resulting crude oil is purified by column chromatography on silica gel, with ether as eluent.

In summary, the protocol represents a short regioand stereoselective way to new disubstituted vinyl phosphonates in high yields.

References

- 1 G. Giordano and G. Castaldi, J. Org. Chem., 54 (1989) 1470.
- 2 T. Minami and J. Motoyushi, Synthesis (1992) 333, and references cited therein.
- 3 G.M. Kosolapoff and L. Maier, Organic Phosphorus Compounds, Wiley, New York, Vol. 7, 1976, p. 25.
- 4 See for example W. Waszkul, T. Janecki and R. Bodalsky, Synthesis (1984) 1025.
- 5 T. Hirao, T. Masunaga, Y. Ohshiro and T. Agawa, Tetrahedron Lett., 21 (1980) 3595.
- 6 M. Yamashita, Y. Tomada, A. Lida and T. Oshikawa, Synthesis (1990) 420.
- 7 M.S. Chatta and A.M. Aguiar, J. Org. Chem., 36 (1971) 2719.
- 8 J.F. Normant and A. Alexakis, Synthesis (1981) 841.
- 9 L.D. Quin, in J.G. Verkade and L.D. Quin (eds.), Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis, VCH, Deerfield Beach, 1987, p. 401.